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Abstract

The creatine/phosphocreatine circuit pro-
vides an efficient energy buffering and trans-
port system in a variety of cells with high and
fluctuating energy requirements. It connects
sites of energy production (mitochondria,
glycolysis) with sites of energy consumption
(various cellular ATPases). The cellular crea-
tine/fphosphocreatine pool is linked to the
ATP/ADP pool by the action of different iso-
forms of creatine kinase located at distinct
subcellular compartments. Octameric mito-
chendrial creatine kinase (MtCK), together
with porin and adenine nucleotide translo-

case, forms a microcompartment at contact
sites between inner and outer mitochondrial
membranes and facilitates the production
and export into the cytosol of phasphocrea-
tine. MitCK is probably in direct protein-pro-
tein contact with outer membrane porin,
whereas interaction with inner membrane
adenine nucleotide translocase is rather me-
diated by acidic phopholipids (like cardioli-
pin) present in significant amounts in the
inner membrane. Octamer-dimer transitions
of MtCK as well as different creatine kinase
substrates have a profound influence on con-
trolling mitochondrial permeability transition
{(MPT). Inactivation by reactive oxygen spe-
cies of MtCK and destabilization of its octa-
meric structure are factors that contribute to
impairment of energy homeostasis and facil-
itated opening of the MPT pore, which even-
tually lead to tissue damage during periods

of ischemia/reperfusion.
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Introduction

Creatine (Cr) supplementation has been
reported to have beneficial effects in several
animal models of neurodegenerative diseases.
It improves motor performance, extends the
life span of transgenic mice and protects from
loss of motor neurons in a model of amyo-
trophic lateral sclerosis [1]. Attenuation by
creatine of N-methyl-D-aspartate excitotoxic-
ity-mediated striatal lesions has also been ob-
served [2]. Moreover, in cultures of rat hippo-
campal neurons, Cr protects against toxicity
of glutamate and B-amyloid [3]. These posi-
tive effects of Cr can be attributed to its role in
supporting energy supply and homeostasis via
the creatine/phosphocreatine (Cr/PCr) circuit
facilitated by the interplay between cytosolic
and mitochondrial creatine kinases (CK) [re-
viewed in 4]. In this article, after a concise
general introduction into the properties of the
Cr/PCr circuit, we mainly focus on several
structural and functional characteristics of
mitochondrial creatine kinase (MtCK) that
are relevant to its role in contact site forma-
tion and metabolite channelling. This in-
cludes a discussion of the current knowledge
about the structural and functional interac-
tions of MtCK with the voltage-dependent
anion channel (VDAC), or porin of the outer,
and adenine nucleotide translocase (ANT) of
the inner mitochondrial membrane. In this
context, a possible function of MtCK in con-
trolling the mitochondrial permeability tran-
sition pore (MPT pore) is presented. The lat-
ter has been implied by some researchers to
depend on the ANT and, therefore, we shall
also briefly review some experimental pieces
of evidence supporting the fact that ANT is
able to switch from a specific adenine nucleo-
tide carrier to an unspecific pore. Although
the exact molecular identity of the MPT is
still a matter of debate [5, 6], ANT in its state
of an unspecific pore displays some remark-
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able characteristics of the MPT pore [7-9].
Impairment of MtCK activity and changes of
the MtCK octamer/dimer equilibrium by the
action of reactive oxygen species (ROS)
that take place during ischemia/reperfusion
events, leading to tissue damage, will be dis-
cussed in terms of energy production and per-
meability transition, without emphasizing the
general role of mitochondria and MPT in cell
death, a topic that has been exhaustively re-
viewed in recent years [10-14a]. Here, we pre-
suppose that MPT pore opening can indeed
lead to cell death.

The Cr/PCr Circuit

In cells with high and fluctuating energy
demands, sites of energy production and ener-
gy consumption are connected by a Cr/PCr
circuit [for reviews, see 4, 15, 16]. The revers-
ible transphosphorylation of ATP to PCr is
mediated by different isoforms of CK located
in distinct subcellular compartments, Cells
usually coexpress a pair of cytosolic and mito-
chondrial CK isoforms. The former are found
mainly at sites of energy consumption, where
they are functionally coupled to different cel-
hilar ATPases. Well-documented examples
are the sarcoplasmic reticulum CaZ*-ATPase
[17-19], myosin ATPase [20-23], and plasma
membrane Na,K-ATPase [24]. The main
function of CK at these subcellular sites of
high energy demand is to keep the local ATP/
ADP ratio high and constant during periods
of high cellular activity (e.g. during muscle
contraction) by catalyzing the reverse CK
reaction to locally produce in situ ATP from
PCr. This function of the CK system has been
designated as ‘temporal energy buffering’. It
could be shown that local ATP/ADP pools are
maintained by CK and that they do not easily
equilibrate with the global adenine nucleotide
pool [19], a strong indication for microcom-
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partmentation with locally restricted fluxes of
ATP and ADP.

MtCK is strictly localized to the peripheral
space between mitochondrial inner and outer
membranes as well as to the space along the
cristae [25]. It has preferential access to mito-
chondrial ATP produced by oxidative phos-
phorylation to generate PCr which is exported
to the cytosol via the outer mitochondrial
membrane protein porin [26-29]. Utilization
of PCr by cytosolic CKs regenerates Cr which
diffuses back to mitochondria for rephospho-
rylation, thereby closing the Cr/PCr circuit (or
PCr shuttle). The benefits of such an energy
shuttling system are particularly evident in
elongated or polarized cells like photorecep-
tors [30] or sperms [31]. In rooster sperms,
25-30 mitochondria are strictly localized to
the midpiece only, between the sperm’s head
and the almost 100-um-long tail, and these
mitochondria produce all the energy required
for cell motility and fertilization. Estimation
of diffusional fluxes of energy carrier metabo-
lites between mitochondria and distally lo-
cated dynein ATPases in the flagellum re-
vealed that the diffusion of adenine nucleo-
tides, especially ADP, is very limited over
long distances, compared to that of Cr and
PCr[32]. By the Cr/PCr circuit, energy flux is
accelerated by several orders of magnitude
and enables energy production to meet the
rate of energy utilization [33]. Consequently,
targetted inactivation of CK by dinitrofluoro-
benzene in sea urchin sperms led to progres-
sive cessation of flagellar wave bending from
the distal to the proximal parts of the sperm
cell [34]. It depends largely on the cell type,
whether the energy buffering or shuttling
function of the CK system predominates [4,
35].

Mitochondrial Creatine Kinase

NMitCK and Contact Sites

Structural Properties of MtCK Relevant to

Contact Site Formation

In solution, MtCK isolated from tissues or
after bacterial expression exists in an equilib-
rium of octamers and dimers [36, 37], while
cytosolic CK forms exclusively dimers [38].
Electron-microscopic imaging of single MtCK
particles and two-dimensional crystals gave
the first indications of highly symmetrical
cube-like octameric molecules with the four
dimers arranged around a 4-fold axis, giving
rise to a central channel of 20 A in diameter
[39-41]. This suggestive picture of overall
MtCK structure was later confirmed by the
high-resolution X-ray structure of chicken
sarcomeric [42] and human ubiquitous MtCK
[43]. The octameric molecule consists of two
identical ‘top’ and ‘bottom’ faces with the C-
terminal ends exposed on both faces. These
positively charged C-terminal stretches are
believed to be responsible for the high affinity
of octameric MtCK to negatively charged
phospholipid surfaces [44-46]. With model
membranes and liposomes, it could be shown
that the binding affinity of MtCK increases
with increasing content of acidic phospholip-
ids [47-49]. The symmetry of the MtCK oc-
tamer also facilitates cross-linking of two
membranes with MtCK ‘sandwiched’ in be-
tween. This has been demonstrated in vitro by
surface pressure measurements of lipid mono-
layers spread at an air-water interface [50].
Injection of octameric MtCK in the subphase
resulted in an increase of the surface pressure
due to binding of MtCK particles to the
monolayer. Subsequent injection of radioac-
tively labelled liposomes resulted in a signifi-
cant rise in surface radioactivity indicating
binding of vesicles to the surface monolayer
mediated by MtCK octamers [50]. Similar
measurements with monolayers and lipo-
somes composed of natural phospholipid
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mixtures derived from outer and inner mito-
chondrial membranes gave unequivocal evi-
dence that MtCK can indeed cross-link the
two mitochondrial membranes. This is in
strong support for the ability of octameric
MtCK to mediate contact site formation in
mitochondria. In contrast, dimeric MtCK as
well as dimeric cytosolic muscle or brain type
CK failed to cross-link two membranes, al-
though these species showed weak membrane
binding affinities [49, 50]. It is interesting to
note that rebinding of dimeric MtCK to pre-
viously depleted mitoplasts resulted in partial
reoctamerization of the enzyme, most likely
by lateral diffusion of dimers weakly bound to
the membranes [51].

Interaction of MtCK with Outer and Inner

Membrane Components in Mitochondrial

Contact Sites

The Physiological Significance of Contact
Sites: Cr-Stimulated Respiration. There is a
general agreement now from membrane bind-
ing measurements (sce above) that the major
interaction forces between MtCK and phos-
pholipids are of electrostatic nature. There-
fore, it is obvious to speculate that the same
forces are responsible for MtCK-mediated
contact site formation in mitochondria. The
inner mitochondrial membrane contains [3-
16% of the acidic phospholipid diphosphati-
dylglycerol (cardiolipin) [52], which seems to
be concentrated in contact sites [53]. The out-
er membrane contains only trace amounts of
diphosphatidylglycerol, but other negatively
charged phospholipids like phosphatidylino-
sitol are present in significant amounts [52,
54]. Thus, the actual in situ conditions at the
contact site regions for the binding of MtCK
and for cross-linking of mitochondrial mem-
branes at these sites seem [avorable. How-
ever, the question of whether protein-protein
interactions also play a role in MtCK-me-
diated contact site formation still remains
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open. To get a possible answer to this, we first
have to consider the physiological signifi-
cance of contact sites. It has to be stressed that
contact sites are dynamic structures of vari-
able composition and serve different func-
tions, such as protein import into mitochon-
dria [55-57], translocation of phospholipids
and phospholipid precursors [58-61], trans-
port of cholesterol for steroidogenesis [62],
and oxidation of cytosolic NADH [63]. Here,
mitochondrial contact sites are discussed only
in the context of metabolite channelling and
permeability transition, where in both cases,
MtCK serves a functional as well as structural
role.

Comparative measurements of the rates of
oxidative phosphorylation in situ and in iso-
lated mitochondria in the presence and ab-
sence of Cr led to the suggestion that MtCK
together with the ANT of the inner and porin
(VDAC) of the outer membrane form a func-
tional microcompartment [27, 64-67]. With-
in this concept, ATP produced by oxidative
phosphorylation inside the mitochondria is
exported by the ANT and channelled to the
active site of MtCK for transphosphorylation
to PCr. PCr is then funnelled to VDAC to be
expelled to the cytosol, while ADP is chan-
nelled back to the mitochondrial matrix via
the ANT to further support oxidative phos-
phorylation. These observations were sum-
marized in a model where MtCK, VDAC and
ANT are in close proximity to form a ternary
complex and a microcompartment at the con-
tact sites to facilitate the production and ex-
port into the cytosol of PCr and the regenera-
tion of ADP in the intermembrane space.
Within the complex, MtCK is flanked by a
still unknown number of VDAC and ANT
molecules at opposite faces of the MtCK cube
[seee.g. fig. 1 in 35]. Together with the limited
permeability of the outer membrane for ade-
nine nucleotides [66, 68], this model assures
that cytosolic and intermemembrane space
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ATP/ADP pools are separated and prevented
from intermixing, and that MtCK exerts a
major control over oxidative phosphoryla-
tion. This has been convincingly demon-
strated in a recent study with skinned muscle
fibers from wild-type and MtCK-deficient
transgenic mice [26]. The stimulatory effect of
creatine on oxidative phosphorylation in the
presence of small amounts of ADP is mainly
observed with octameric MtCK, but not with
mutant enzymes which do not form octamers
[69]. Thus, only the octameric form of the
enzyme, capable of mediating contact site for-
mation, seems to be relevant for metabolite
channelling. This fact seems to bear some
clinical relevance since in animal models of
heart disease, where cellular energy is com-
promised, a significant proportion of MtCK
dimers were found which supposedly cannot
support mitochondrial energy channelling
[701.

Solubilization of the contact site fraction
by mild detergent extraction of rat brain ho-
mogenates and subsequent purification by ion
exchange chromatography and gel filtration
resulted in coelution of octameric MtCK to-
gether with VDAC and ANT [71]. Reconsti-
tution of these complexes into ATP-loaded
phospholipid vesicles resulted in atractylo-
side-sensitive production of PCr after addi-
tion of Cr to the outside of the liposomes [71].
Thus, complexes of MtCK, VDAC and ANT
can be reconstituted as functional units dis-
playing exactly those properties that one ex-
pects from their function as metabolite chan-
nelling complex for high-energy phosphates in
intact mitochondria.

Structural Interactions between MICK,
ANT and Porin. The close functional coupling
of MtCK, VDAC and ANT in contact sites
suggests direct pairwise structural interac-
tions between MtCK and VDAC and between
MtCK and ANT. In the latter case, however,
apart from the experiments with reconsti-

Mitochondrial Creatine Kinase

tuted complexes which clearly demonstrate
functional coupling of MtCK and ANT (see
above), attempts to demonstrate physical and
structural interactions between MtCK and
ANT have failed so far. This may reflect the
dynamic nature of contact sites, since their
frequency is highly depending on the metabol-
ic state of mitochondria. That is, the number
of contact sites increases under conditions of
active oxidative phosphorylation, i.e. in the
presence of ADP [72], whereas in resting or
uncoupled mitochondria, contact sites are
much less frequent [66]. Their number is also
modulated by the ANT inhibitor carboxy-
atractylate (CAT), a finding that suggested
regulation of contact sites by the ANT
[72]. Considering this rather complex and
dynamic, ANT-ligand-dependent regulation
patterﬁ of contact sites, it is not entirely sur-
prising that formation of MtCK-ANT com-
plexes from isolated components could never
be demonstrated so far in vitro. Isolated
ANT, solubilized in Triton X-100, contains
6-8 tightly bound cardiolipin molecules per
carrier molecule [73, 74], which are indis-
pensable for its adenine nucleotide transport
activity [75]. Therefore, MtCK-ANT interac-
tions may be mediated indirectly by cardioli-
pin rather than through direct protein-protein
contacts. The putative MtCK-ANT interac-
tion will be discussed further in the next chap-
ter, where data on the control by MtCK and
its substrates of mitochondrial permeability
transition are described.

A substantial body of experimental evi-
dence, however, points to the existence of
structural complexes between MtCK and
VDAC. When isolated from osmotically dis-
rupted mitochondria, a considerable part of
the total MtCK activity was found in the con-
tact site fraction cosedimenting with hexoki-
nase (HK) [76]. Similarly, disruption of the
outer membrane with digitonin did not liber-
ate all of the MtCK and HK activity. A signifi-
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cant fraction of octameric MtCK still re-
mained bound to the thus isolated mitoplasts
[77, 78]. Interestingly, in mitoplasts, MtCK
was shown to be regulated by the outer mem-
brane porin, ie. addition of polyanion to
inhibit adenine nucleotide transport through
VDAC also inhibited MtCK activity. More-
over, ADP produced by MtCK in these mito-
plasts was not available for external pyruvate
kinase. Direct evidence for a structural
MitCK-VDAC interaction came from in vitro
experiments where both, wild-type MtCK as
well as an N-terminally truncated mutant of
MtCK, which is unable to reoctamerize [79],
were shown to form complexes with VDAC
[80]. The mutant MtCK-porin complex had
the same apparent molecular mass of 400 kD
as the complex formed between VDAC and
wild-type MtCK. From these observations it
was suggested that MtCK, upon complexation
with VDAC, is stabilized in its octameric
form. From in vitro experiments with puri-
fied proteins, it can be concluded that forma-
tion of complexes between VDAC and MtCK
does not seem to require phospholipids, in
contrast to what may be the case for the
MtCK-ANT interaction (see above), Recon-
stitution of in vitro formed MtCK-VDAC
complexes into planar lipid membranes re-
vealed low ion conductivities of VDAC, simi-
lar to those found in the presence of polyan-
jons, like dextran sulfate or polyaspartic acid
[80]. Polyanions reduce the gating potential
where VDAC switches from the high conduc-
tance to a low conductance state [81, 82]. This
agrees with the observation in intact mito-
chondria, where only about 50% of the total
MtCK activity present in mitochondria could
be measured upon addition of external PCr
[78]. If VDAC in complex with MtCK is in
the low conductance, cation-selective state,
diffusion of anionic PCr through VDAC
should be restricted, whereas diffusion of the
uncharged Cr should be unhindered. A prefer-
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ence for cytosolic Cr over PCr of VYDAC
would be advantageous to drive the MtCK
reaction in the intermembrane compartment
into the direction of PCr production, consis-
tent with the properties of the PCr shuttle, by
which Cr enters and PCr leaves the mitochon-
dria.

Recently, a topological model of VDAC
from Neurospora crassa was deduced from
biotin modification of cysteine residues, in-
troduced by site-directed mutagenesis, to
create double mutants [83]. The relative posi-
tion of biotinylated cysteine pairs with respect
to a planar lipid membrane was assessed by
binding streptavidin from either side (cis and/
or trans) to reconstituted mutant VDAC
channels. Channel properties were analyzed
in terms of voltage gating and conductance.
The resulting folding pattern shows that
VDAC consists of one N-terminal a-helix and
13 transmembrane B-strands. In combination
with data obtained with peptide-specific anti-
VDAC antibodies and analysis of the accessi-
bility to their epitopes in intact mitochondria
and after lysis of the outer membrane [84], the
model also proposes which protein domains
are facing the aqueous compartment on either
side of the membrane. Accordingly, two ma-
jor loops protrude out of the cytosolic surface
of the membrane, whereas only one larger and
two minor loops are exposed to the intermem-
brane space. Thus, the possibilities for MtCK
to form protein-protein contacts from the in-
termembrane space with VDAC seem to be
rather limited according to this static model,
However, VDAC seems to be a highly dy-
namic structure, in particular during voltage
gating. Transition from the high to the low
conductance state is associated with major
domain movements out of the pore, including
the N-terminal a-helix and three adjacent [3-
strands [85, 86], and a reduction of the pore
diameter from 30 to 18 A [85]. As mentioned
above, in a complex with MtCK, VDAC likely
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adopts the low conductance state. This is rem-
iniscent of what has been described for the
VDAC modulator, a homodimeric mitochon-
drial protein of 100 kD, which significantly
reduces the voltage dependence of VDAC[87,
88]. Although located in the intermembrane
space, addition of the purified, putative
VDAC-regulatory protein to intact mitochon-
dria reduced mitochondrial metabolic activi-
ties by decreasing the permeability of the
outer membrane to metabolites [89]. It is con-
ceivable that MtCK, like the VDAC modula-
tor [86], can interact with parts of these mo-
bile domains, thereby locking VDAC into the
closed state. We recently imaged the surface
structure of VDAC at low (15 A) resolution by
metal-shadowing and cryo-electron microsco-
py of porin crystals [90]. Crystals were grown
in the presence of phospholipids to create a
lipid bilayer environment for the insertion of
VDAC channels. Within each unit cell, two
VDAC molecules were incorporated in oppo-
site orientations with respect to the bilayer.
Major protein domains extruding from the
bilayer surface were clearly seen mainly
around one of the two channels (fig. 1). One
may assume that these molecules are inserted
with the cytosolic surface directed to the view-
er, whereas adjacent channels are oriented so
as to be viewed from the intermembrane
space. This interpretation would be in line
with the structural model discussed above. In
accordance with this, substrate-dependent
binding of HK to porin crystals could be mea-
sured, but not binding of MtCK (unpubl.
observations). Binding of the latter is presum-
ably prevented by steric hindrance due to the
close packing of VDAC molecules in the crys-
tals, preventing access of MtCK to its binding
sites.

Mitochondrial Creatine Kinase

Fig. 1. Structure of mitochondrial porin (VDAC) in
two-dimensional crystals. Surface relief reconstruction
(perspective view) of VDAC crystals. The parallelo-
gram-shaped unit cell (outlined) has dimensions of
31 x 57 A and accommodates two porin channels (la-
belled | and 2) which are incorporated in opposite
orientations. Major protein protrusions are indicated
by asterisks. The circle indicates the level of the bilayer
surface. Porin channel 1 is assumed to be viewed from
the cytoplasmic side and channel 2 from the inter-
membrane space [adapted from 90, with permission].

MtCK and the Permeability
Transition

MPT-Like Properties of ANT

Tn the presence of Cr, oxidative phosphor-
ylation is highly stimulated at low ADP con-
centrations due to metabolite channelling be-
tween MtCK and ANT [26]. Given this func-
tional coupling and the notion that the ANT
can form an unspecific pore under certain
conditions [8, 9], this suggests a regulatory
role for MtCK in MPT. Evidence for an
involvement of ANT in MPT was first de-
rived from experiments with intact mitochon-
dria. Since the fundamental analysis of the
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mitochondrial Ca2*-induced membrane tran-
sition [91, 92], it is known that ANT ligands
influence the open-closed transition of this
unselective and multiply regulated channel of
the inner membrane [for reviews, see 6, 93,
94]. Two inhibitors of ATP/ADP exchange,
CAT and bongkrekic acid (BA), operate in
opposite ways, the former increasing the open
probability of the MPT, the latter decreasing
it. These compounds lock the ANT either in
the ‘¢’ (CAT) or the ‘m’ (BA) conformation,
Only the ‘¢’ conformation, where the adenine
nucleotide binding site is facing the inter-
membrane space, seems to be relevant for
MPT, but not the matrix-facing ‘m’ confor-
mation [95-97]. However, results from exper-
iments with intact mitochondria should still
be interpreted with some care if conclusions
about the molecular identity of the MPT pore
are drawn. In case of the ANT ligands, it has
to be stressed that the ‘m’ to ‘¢’ conformation-
al change is accompanied by major structural
rearrangements [98, 99]. In addition, the ade-
nine nucleotide binding site of ANT contains
3 positive countercharges [100, 101] which
are cofranslocated during ADP/ATP ex-
change and, thus, during the ‘m’ to ‘¢’ conver-
sion. These charge movements may indirectly
influence the MPT by the membrane poten-
tial which is a known modulator of the open-
closed probability of the MPT [102, 103].
Furthermore, a mitochondrial multiconduc-
tance channel, measured by patch clamping of
mitoplasts and considered to be the electro-
physiological counterpart of the MPT [104],
was also detected in an ANT-deficient yeast
strain [105]. Finally, it has been shown that
the MPT is highly influenced by electron flux
through respiratory complex I. MPT inhibi-
tion occurs if the electron flux is suppressed
by quinones [106, 107]. This led to the sugges-
tion that the MPT may reside within complex
1[6]. Thus, there are some serious arguments
against ANT being the sole MPT pore-form-
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ing channel. However, we can imagine that
long-term pore opening in the mitochondrial
inner membrane, with short circuiting of the
proton current, will have the same deleterious
consequences on cellular energy homeostasis,
irrespective of the molecular species provid-
ing an unspecific diffusion channel. There-
fore, it is worth noticing the pore propertics of
the isolated and reconstituted ANT. Corecon-
stitution of purified ANT and bacteriorho-
dopsin into proteoliposomes led to a much
faster dissipation of the ApH induced by a
short light flash than in liposomes containing
the light-driven proton pump as the sole com-
ponent [108]. Treatment with the SH-modi-
fying compound mersalyl gave a further in-
crease of the rate of ApH dissipation. This was
attributed to modification of thiol groups on
the ANT, confirming the pore-forming capac-
ity of ANT (and other members of the mito-
chondrial carrier familiy like the aspartate/
glutamate carrier) upon treatment with SIH
reagents [109, 110]. Single-channel current
measurements on excised patches with recon-
stituted ANT revealed a large Ca?*-dependent
channel with different conductance sublevels
similar to those of the multiconductance
channel [9]. The channel also responded in
the same manner (open-closed) to the ANT
ligands CAT, BA and ADP, and, most inter-
estingly, channel conductance was abolished
upon washing out the Ca?+ as is the case for
the MPT [111]. The observed CaZ* depen-
dence of ANT pore formation was tentatively
interpreted by an indirect influence of Ca?* on
ANT. In this model, Ca?* binds to the phos-
phate groups of cardiolipin which is bound
tightly to the ANT, thereby releasing positive
charges at the interface of ANT dimers [sce
fig. 7 in 9]. The resulting electrostatic repul-
sion of ANT subunits would then give rise to a
large central channel. This rough model can,
however, not account for the specific depen-
dence of the MPT on Ca?* in intact mitochon-
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dria which is antagonized by Mg2* (and other
divalent cations) [112]. These findings were
corroborated by another approach with highly
purified ANT reconstituted into malate-
loaded liposomes [8]. Malate was released
after treatment with Ca2*, atractyloside and
HgCl, but not with ADP. The effects of these
compounds on the reconstituted ANT are the
same as for the MPT. In all cases reported
above, channel activity was not sensitive
against the MPT inhibitor cyclosporin A
(CsA) as the preparations did not contain ma-
trix cyclophilin D which is recruited to the
inner membrane under MPT-promoting con-
ditions and provides the intramitochondrial
receptor for CsA [97, 113, 114]. If, however,
ANT is coreconstituted with cyclophilin D,
pore activity becomes sensitive to CsA. This
has been shown with a VDAC-ANT complex
[7], in which the CsA/cyclophilin-sensitivity-
mediating component within the complex
seems to be the ANT [7, 115]. The electro-
physiological channel properties of ANT are
also modulated by the proapoptotic protein
Bax. Atractyloside-treated ANT cooperates
with Bax to form a composite channel with
qualitative and quantitative different charac-
teristics compared to channels formed by the
respective components alone. In contrast, in
complex with the cell death antagonist Bcl-2,
channel activities of ANT are completely
abolished [116]. These findings may be rele-
vant to the function of Bax and Bcl-2 in mito-
chondria, both having been reported to mod-
ulate MPT directly or indirectly in the direc-
tion expected from their pro- (Bax) and anti-
apoptotic (Bcl-2) action in cells [117, 118].
Taken together, the pore-forming proper-
ties of ANT are experimentally well support-
ed and these characteristics may be of physio-
logical significance under conditions promot-
ing in situ MPT pore opening. Although atrac-
tyloside and BA are nonphysiological but spe-
cific ligands of the ANT, they are widely used

Mitochondrial Creatine Kinase

in cell cultures [119-125], and in some studies
their action seems to be related to MPT. Thus,
it is likely that ANT is a key player of MPT, at
least in some cells and under a certain set of
conditions.

Control of MPT by MtCK and the CK

Substrates, Cr and Cyclocreatine

In the section The Physiological Signifi-
cance of Contact Sites: Cr-Stimulated Respi-
ration, we reported on the isolation of MtCK-
VDAC-ANT complexes from rat brains and
their functional reconstitution [71]. An inter-
esting feature of these reconstituted com-
plexes is also related to MPT. Addition of
Ca?* to malate-loaded vesicles gave no detect-
able release of the entrapped malate. How-
ever, after treatment of the vesicles with a
transition state analog complex to promote
dissociation of octameric MtCK into dimers
[126] and subsequent addition of Ca?*, malate
was liberated in a dose-dependent way [127].
As malate is not a substrate of the ANT, it was
concluded that under these conditions the
ANT adopts a pore-like conformation allow-
ing an unspecific flux of nontransportable
substrates [127, 128]. In this model, octamer-
ic MtCK, which is squeezed in between ANT
and VDAC, would restrict ANT in its flexibil-
ity, preventing conformational changes other
than those required for ATP/ADP exchange.
Upon dissociation and probably release of
MtCK from its binding sites within the recon-
stituted complexes, ANT is liberated from
conformational constraints and can switch to
the pore-like conformation [see fig. 2 in 128].
Further evidence for a control of MPT by
MtCK came from experiments with intact mi-
tochondria from transgenic mice expressing
MtCK in their livers. These mitochondria
responded by MPT pore opening upon treat-
ment with Ca2* and atractyloside in the same
way as liver mitochondria from control mice
lacking MtCK [127]. In the presence of MtCK
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Mitochondria from
transgenic mice

Mitochondria from
control mice

Cyclosporin A Cr
3 [CyCr

\

Protection

Swelling

Quter membrane rupture
Membrane potential collapse
Release of cytochrome ¢ and

AlF ———— cell death

Fig. 2. Protection of MtCK containing mitochondria
by Cr and CyCr against mitochondrial permeability
transition. Schematic representation of mitochondria
from conirol (left) and transgenic mice expressing
MtCK (shown as black squares) in their liver (right),
CsA-sensitive swelling (triggered by Ca?* and atracty-
loside [127]) due to MPT pore opening is observed
only in mitochondria from control animals, iff Cr or
CyCr are present, eventually leading to outer mem-
brane rupture, membranc potential collapse and re-
lease of cytochrome ¢ and apoptosis-inducing factor.
Under the same conditions, mitochondria from trans-
genic mice containing MtCK are protected.

substrates, however, a dramatic difference
between control and transgenic liver mi-
tochondria was observed (fig. 2). Whereas
mitochondria from control animals showed
CsA-inhibited MPT pore opening (measured
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by uncoupled respiration with succinate as
substrate, and recently also by mitochondrial
swelling experiments (unpubl. data), those
from transgenic animals were resistant and
remained closed if Cr or cyclocreatine (CyCr)
were present, The inhibitory effects of these
CK. substrates were comparable to those of
CsA. These effects of CK substrates were seen
only with Cr or CyCr, an analog of Cr which
can be phosphorylated by MtCK. On the oth-
er hand, PCr and B-guanidinopropionic acid
(B-GPA) were inefficient in preventing pore
opening in transgenic liver mitochondria. {3-
GPA is another substrate analog of Cr, but not
effective in stimulating oxidative phosphory-
lation [129]. These results were interpreted in
terms of a substrate-dependent association
(promoted by Cr or CyCr but not by PCr or
B-GPA) of MtCK to the inner membrane and
in particular to ANT [127]. This effect may
not depend on conformational changes of
MtCK induced by substrate binding because
the radii of gyration (measured by small-angle
X-ray scattering) do not significantly differ
between octameric MtCK with and without
bound Cr [130]. By comparing the results
obtained with intact mitochondria with those
of the reconstituted MtCK-VDAC-ANT com-
plexes discussed above, one might be con-
fused about the different observations made
in the absence of CK substrates. In the iso-
lated complexes, the mere presence of MtCK.
is sufficient to prevent the ANT from
adopting a pore conformation and substrates
do not seem to be required. In contrast, in
intact mitochondria, CK substrates must be
present to prevent MPT pore opening. This
apparent discrepancy may, however, again re-
flect the dynamic nature of contact sitcs,
which were frozen in a fixed state during iso-
lation of the complexes.

At this point it is opportune to briefly dis-
cuss some MPT-related properties of com-
plexes composed of HK, VDAC and ANT as
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well. Like the MtCK containing complexes,
these complexes also exhibit MPT-like behav-
ior in reconstituted systems [71, 131, 132]. In
particular, they are much more sensitive to
Ca2*-induced pore formation. This can be un-
derstood by comparing the topology of the
HK with the MtCK complexes. HK has no
structural contact with the ANT, but is bound
to its receptor VDAC [128]. Interestingly, in
the presence of the HK substrates glucose and
ATP (either alone or both in combination),
pore opening is drastically reduced in recon-
stituted complexes and the combination of
HX substrates is most efficient [133]. Under
these latter conditions, ADP is produced from
plucose and ATP, and ADP is known to be a
very potent inhibitor of MPT [5, 91, 134].
The analogy to the observation that Cr inhib-
its MPT in transgenic liver mitochondria is

striking and it is tempting to speculate that a

similar mechanism of MPT protection is
operating, even in the absence of exogeneous
ATP. From the above discussion, we may
conclude that inhibition of MPT by MtCK
and Cr is the consequence of both, a structural
interaction between MtCK and ANT (as ob-
served with the reconstituted complexes),
and their close functional coupling (observed
in mitochondria). Thus, factors impairing
MICK activity and/or destabilizing its octa-
meric structure are expected to sensitize mito-
chondria to MPT pore opening and lead a cell
into apoptosis or necrosis.

Impairing the Functional and
Structural Integrity of MtCK

Sensitivity of MtCK to ROS

Mitochondria are the main sources of
ROS, in particular during periods of isch-
emia/reperfusion where reoxygenation leads
to enhanced oxidative stress by inducing in-
creased levels of superoxide anion O3, nitric

Mitochondrial Creatine Kinase

oxide (NO) and peroxynitrite (PN) [135, 136].
After local reperfusion of isolated ischemic rat
hearts, significantly elevated levels of NO,
superoxide and PN were detected only in the
affected part of the tissue [137]. MtCK, lo-
cated in the mitochondrial compartment and
therefore in close proximity of the production
sites of ROS, is permenantly exposed to dam-
age by these compounds. Several studies show
that CK activity is very sensitive to H20,, O3,
NO and PN. For example mitochondrial
membranes were incubated with a xanthine/
xanthine oxidase system producing O3 which
reduced MtCK activity in a time- and dose-
dependent manner. Xanthine (0.133 mM)
and xanthine oxidase (0.002 U/ml) decreased
CK activity by 60%, whereas 1 mA/ DTT or
10 mAM cysteine could completely block this
inhibition by O3 [138], suggesting that oxida-
tion of sulfhydryl groups is involved in the
inactivation of the enzyme. Inactivation of
purified muscle type CK was shown to be
enhanced by adding Fe?* in micromolar con-
centrations [139], but CK activity could also
be protected by reduced glutathione, corrobo-
rating the above conclusions.

It has been shown that different NO do-
nors, like SNAP or SNAC, can inactivate
cytosolic rabbit muscle CK in a time- and con-
centration-dependent manner. This inactiva-
tion was reversible by the addition of 10 mM
DTT [140, 141], reducing the S-nitrosation
which is responsible for the inactivation of
CK. A similar effect of NO on CK was ob-
served in an isolated rat heart perfused with
SNAC [141], in adult rat ventricular myocytes
[140], in CK preparations solubilized from
mitochondria, in isolated mitochondria and
in saponin-skinned muscle fibers [142]. In all
these cases CK activity was decreased and
could be recovered by adding DTT.

In contrast to these findings, inactivation
due to PN is irreversible which is the case for
cytosolic muscle type CK [143] as well as for
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MtCK [144]. Mitochondria are productive
sources of PN during the reperfusion period
due to a mitochondrially located NO synthase
[145]. PN modifies mostly irreversibly metal-
loproteins like respiratory chain complexes I,
II and III [146] and aconitasc [147]. PN is a
powerful oxidant which can modify chemical-
ly the side chains of several amino acids,
including oxidation of thiols [148, 149] as well
as nitration of tryptophan [150] and tyrosine
residues [151].

A 350 pM addition of PN (which is well
within the physiological range [152]) to puri-
fied MtCK reduced the enzyme activity to
14% of control. With a full set of substrates of
the forward reaction (Cr and MgATP) the
remaining activity was increased to 28%,
whereas only one substrate (either Cr or
MgATP) showed no or little protection. There
was an even more pronounced protective ef-
fect with the addition of the substrates of the
reverse reaction (MgADP and PCr) resulting
in a residual activity of 50%. At the level of
mitochondria, inhibition of MtCK occurred
at doses of PN where other components of the
respiratory chain and oxidative phosphoryla-
tion system were not yet affected, showing
that MtCK is extremely sensitive to PN-
induced damage [144]. The most sensitive
residue in MtCK to PN modification also
seems to be the active site cysteine 278 [144,
153, 154].

Due to different behaviors in reversibility
of CK activity, the cause of inactivation can
be distinguished: inactivation by NO is due to
S-nitrosation of Cys 278 (MtCK numbering)
and is reversible by DTT, inactivation by PN
is probably due to oxidation of the same
active site cysteine and is irreversible, It re-
mains an open question whether reversible
inhibition of cytosolic and mitochondrial CK
by NO may be of physiological significance in
regulation of energy metabolism in vivo and
whether this adds to the multitude of cellular
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processes controlled by NO. On the other
hand, it is to be expected that irreversible
inhibition of the CK system severely impairs
cellular energy homeostasis.

Another target of PN modification is Trp
264 which is situated at the dimer-dimer
interface of octameric MtCK [154]. Modifica-
tion of this residue may be responsible for the
observed destabilization of MtCK octamers
and failure of reoctamerization of MtCK di-
mers [70].

Consequences of MtCK Inhibition and

Destabilization during Ischemia/

Reperfitsion

The primary consequences of ischemia are
loss of ATP (and ADP due to degradation
[155]), a significant rise in intraceliular phos-
phate [156], and a fall in pH due to lactic acid
production [157]. These are followed by ele-
vated cytosolic Ca?+ levels [158] which can
lead to stimulation of mitochondrial NO syn-
thase and generation of ROS, including PN
[145, 159]. Upon reperfusion, additional oxi-
dative stress is imposed resulting in a vicious
cycle of further increase of Ca2*, mitochon-
drial Ca2* overload, and energy depletion due
to MPT opening [160-162]. Under these con-
ditions, one would expect that MtCK activity
and oligomeric state are also affected. Indeed,
a significant decrease of the octamer/dimer
ratio of MtCK has been observed in ischemic
rat hearts [70], which does not seem to be
changed further during reperfusion, despite
additional ROS production within this peri-
od. As outlined in the section Control of MPT
by MtCK and the CK Substrates, Cr and
Cyclocreatine, dimerization of MtCK proba-
bly leads to dissociation of the enzyme from
its binding sites at the inner membrane and
may contribute to MPT pore opening,.

The apparent paradox that the most seri-
ous cellular damage does not occur during the
anoxic phase, but after reoxygenation [163]
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may also be a consequence of the impaired
production of high-energy phosphates by
MtCK which is a prime target for oxidative
damage in mitochondria. This in turn would
further disturb Ca?* homeostasis and, conse-
quently, prevent full recovery of the affected
tissue. The observation that Cr protects mito-
chondria from MPT pore opening [127] and
also partially protects MtCK from inactiva-
tion by ROS may be of clinical relevance, e.g.
during organ transplantation or cardiac sur-
gery. Supplementation of reperfusion media

by creatine may help to keep tissue damage at
a minimum,

It looks like an old enzyme, CK, discov-
ered in the 1930s [for review, see 164], is
entering new avenues concerning clinical ap-
plications. Cr supplementation, now widely
used by athletes [165], will become a clinically
important adjuvant therapy for a number of
pathological conditions [166], including neu-
romuscular and neurodegenerative diseases
(1,167, 168].

o
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